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We develop scientific computing soware
for expeditioous and efficient analyzing of
large neural datasets that can perform well 
even on resource-constrained systems.
Additionally, advanced signal processing
implementations can uncover deeper insights!

We build, modify and optimize neural data
acquisition hardware and soware for 
realtime closed-loop neural interrogation 
to establish causality within the brain!

We contribute to neuroscientific computing with the development of electrophysiological
neural data object models with easy to use analysis in-built. Taking advantage of this
soware and machine learning techniques (latent space models), we can 
further understand what neurons are encoding that may not
be achievable with traditional Bayesian decoding approaches!
Additionally, we perform clusterless decoding of neural
    activity to take advantage of all spikes recorded
        as opposed to just clusterable units!

Chu & Kemere ENeuro, 2021
Dutta, Ackermann & Kemere JNE, 2018

Ackermann,...,Kemere, Diba Elife, 2018
  Ackermann, Kemere, Cunningham bioRxiv, 2019
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We prototype & advance imaging 
hardware for increased fps with
increased spatial resolution &
higher signal to noise ratio
at dimmer excitation lights
enabling us to 
illuminate more 
neurons!
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We are developing models to describe and decode the latent dynamics of
neural ensembles in the hippocampus. By applying and tailoring 
dimensionality reduction techniques for neural signal processing, we aim to
decode neural activity in an unsupervised learning manner. This can reveal
the neural dynamics during both learning and memory consolidation.

Recording from the hippocampus and/or other brain areas 
involved in learning and memory, we interrogate the neural 
substrates associated with decision making processes, learning,
and memory consolidation as well as trace of memories within
throughout the brain.

Gao, ..., Kemere IEEE EMBS 2020
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